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V ABSTRACT

Elliptic boundary value problems of the form Lu = g(x, u)

omean ame

in 2 and u = 0 on the boundary of ,Q"?aqre studied where g

¢ to 1afiaity qoes te zero from above,

is singular in that g(x, r) »e uniformly as r ~_0¥. Existence
of classical and generalized solutions is established and an
associated nonlinear eigenvalue problem is treated. A de-
tailed study is made of the behaviour of the solutions and

omesa

their gradients near the boundary of @°. This leads to global

estimates for the modulus of continuity of solutions.
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ON A DIRICHLET PROBLEM WITH A SINGULAR NONLINEARITY

M. G. Crandall, P. H. Rabinowitz and L. Tartar

This paper concerns nonlinear elliptic boundary value problems of
the form

2 n
9 u ou
B == a @) ) b as Fex)u =gk, u), X e 0
8 a ’ ’
R RS

(0.1)

u(x) = 0, Xe 0Q ,

where Q is a bounded domain in an, 9q is the boundary of @, the
n
coefficients of L are real, ¢ >0 and 2 aij(x) gigj >0 for xe @ and
dig=l
£ e R" \ {0} . The principle feature of interest here is that we assume

? g is singular in the sense that g(x, r) is only defined for r >0 and

3 g(x,r)—~ +o© as r - 0+ uniformly for X e Q . Obviously (0.1) cannot

then have a solution ue Cz(ﬁ) and, in the cases we discuss, there
= 1

may be no solutions of class CI(Q) or Wo’ Z(Sz) . However, under

apprdpriate assumptions, we will obtain a classical solution of (0.1) ,

i.e. a solution ue CZ(Q) N c(Q) with u>0 in Q. In particular,

ob

if g,L, 9Q are sufficiently smooth and g(x,r) is

bounded from above uniformly for X e Q and r > 1, then (0.1) has a

s classical solution (Corollary 1.10). If the coefficients of L. and g are
merely continuous, solutions of (0.1) still exist in a generalized sense

made precise later (Theorem 1. 21).

Sponsored in part by the United States Army under Contract No. DAAG29-
f 75-C-0024, by the Office of Naval Research under Contract No. NO00014 -
76 -C-0300 and the National Science Foundation under Grant MCS76-

10227.
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A second object of study here is the behaviour of solutions of
(0.1) near 3Q when g is singular. As a consequence of this study,
stronger global (i.e. in 5) regularity properties than continuity of
solutions are obtained. For example, if g(x,r) =r_ a, a >1, then we

2/(C!+1) (5)

show solutions u of (0.1) lie in the Hdlder class C
The existence of solutions of (0.1) is discussed in Section 1.

The special case in which the map r = g(x,r) is nonincreasing admits

an especially simple solution and is studied first. Then more general

cases are treated by means of the nonlinear eigenvalue problem

(0.2) Lu = Ag(X,u), Xe ;, u=0, Xe 0Q .

The boundary behaviour and regularity are discussed in Section 2. First
the rate at which u(x) - 0 when x - 8Q is determined. This is used
to study the behaviour of |grad u(x)l as x -+ 9Q . Lastly as a con-
sequence of these results, we obtain an estimate for the modulus of
continuity of u in .

There seems to have been little work done on singular problems
such as (0.1) in the literature. After our main results were obtained
we learned of the work of Fulks and Maybee [5] and of Stuart [10]. In

[ 5], the authors treat the existence question for the equation
(0. 3) u - Au=g(x,tu), xe 2 CR', t>0
coupled with initial and boundary conditions for a class of functions g

which are nonincreasing in u . Assuming that g(x,t,r) = g(x,r) as t-ow they
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also obtain classical solutions of the corresponding elliptic boundary

value problem upon letting t -~ . Their proofs involve, in part, an

interesting argument reminiscent of the Schwarz alternating procedure
for Laplace's equation. In [0] Stuart studies the existence of classical
solutions to (0.1) under hypotheses related to those of Corollary 1. 10
below. Stuart's attack is based on finding sub- and supersolutions for
approximate problems together with appropriate a priori estimates.
Singular problems somewhat related to (0.1) have also been
treated in the context of integral equations. Nowosad [7] studied ex- I
istence of solutions of the equation
1

(0. 4) ux) = [ Ko, y) () dy
0

1

where K is a positive semidefinite kernel satisfying f K(x,y)dy >8 >0 .
0

This work was generalized by Karlin and Nirenberg [6] who treated

1
(0. 5) ux) = [ K, y)uy) @ dy

0
where o« >0, K>0, K is continuous and K(x,x) >0 for xe [0,1].

These authors also obtained some results concerning the nonlinear

eigenvalue problem

1

(0. 6) ax) = [Kx,y) oy, u(v)dy .
0

Another abstract result in the same direction was given by Ramalho [9].

More recently Stuart [11] studied existence for
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(0.7) ux) = g(x) + [ K(x,y) f(y, u(y))dy
Q2

where singular functions were permitted.

The results of [6], [7], [8], [10] have the common feature that
although the nonlinearity treated is singular at u = 0, the solution
obtained is strictly positive in the (closed) domain of definition.
Therefore the singularity plays a minor role in comparison with the re-
sults of (5], [9] and the current work.

The authors are indebted to Louis Nirenberg for a suggestion which

led us to Theorem 2. 5.

Section 1.

In this section the existence of classical solutions of (0.1) will
be established when 99, g and the coefficients of L are sufficiently
smooth. Then the existence of generalized solutions of (0.1) when
g and the coefficients of L are merely continuous will be proved. For
simplicity, we take "sufficiently smo<.>th" to mean that the coefficients
of L are in cl(ﬁ), 80 1is of class C> and ge 01(5 X (0,%0)) . This
allows use of the Schauder theory with any exponent a e (0,1) in the
course of discussion. (Alternatively, « ¢ (0,1) could be fixed and

corresponding modifications made in the assumptions and proofs below. )

Sufficient smoothness is assumed through equation (l.19) below. Con-

cerning g we will further assume

(gl) lim g(x,r) = © uniformly for x e 8.
r—-0+

.
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We begin with the important special case in which also
(gz) g(x,r) is nonincreasing in re (0,%) for xe Q . |
The solvability of (0.1) under (ql)-(gz) is covered by the results of

[5] (when L= -A) and [10]. However, a simpler and more direct

proof is presented here. 1

Theorem 1.1. If g satisfies (gl)-(gz) then (0.1) possesses a unique

classical solution u e CZ(Q) Nc@E) with u>0 in Q. ]

Proof of Theorem 1l.1. The existence will be established by solving

the approximate problems

Lu
(1. 2) =

=g on 92
€

H

g(x,e+u€) in @

for ¢ >0 and then showing the convergence of ue as ¢~ 0+ toa
solution u . The next two lemmas provide the basic information needed

j’,a(ﬁ) denotes the set

to carry out this process. In what follows C
of j-times continuously differentiable functions on Q whose derivatives
of order j are Hdlder continuous with exponent o« and CO’ @) =

cY@) .

Lemma 1. 3. Let (gl) and (gz) hold and € >0 be such that g(x,e) >0

for xe @ and 0<g<e If 0<e<e, then

0" 0’

(i) (l.2) has a unique nonnegative classical solution ue

(i) u_e c® %@y forany ae (0,1),

B




(iii) ue(x) >0 for xe Q and

(1. 4) u >u e+u < 6+u
B Ei=

<g< <
5 for 0 e_&_eo

)

Proof of Lemma 1. 3. The existence of ue will follow once we exhibit

an ordered pair of sub- and supersolutions of (1. 2) (see, e.q., [2]).

Since 0<eg<e L0 = 0 < g(X, ¢e) = g(x, £¢+0) and therefore 0 is a

0’
subsolution of (1. 2). Next define we CZ’ C1(5) by Lw = g(x,¢e) in Q
and w=0 on 9Q . The Schauder theory for linear elliptic equations
([1]) assures the existence and uniqueness of w . By the maximum
principle w >0 in  so, by (gz), Lw = g(x,¢) > g(x,e+w) in Q.
Thus w is a supersolution of (1.2) and [0,w] is the desired ordered
pair. Since a%— g(X, e+r) is bounded for 0 <r<w(x), Xe 5, a
theorem of Amann [2] implies that (1.2) has a solution ue € CZ’ a(ﬁ)

with 0 < ue <w in Q. The uniqueness of u8 follows once we
establish (l.4) for arbitrary solutions ue, u6 of the ¢ and & problems.

Let 0<g<6<c¢

0,

and ue, u6 be such solutions. If u is either

us - ug or (6 +u6) - (e + ue) then G_>_0 on 9Q and, since g is
nonincreasing, La >0 on A=d{xe D | ﬁ(x) <0} . The maximum principle
therefore asserts that U attains its minimum over A on 9A. But
ﬁ =0 on 9A. Since G <0 on A, A must be empty. Thus GZ 0
and (1. 4) is established.

The next lemma, which follows from [3, Thm.4 of Chapter 5] and

the Sobolev embedding theorem, will also be used in later proofs.

Wk’ q(Q) denotes the usual Sobolev space in what follows.

-6-




Lemma 1. 5. Let 8, 9 be bounded open domains in R" with s—o sl R
Suppose ¢ 1is a second order uniformly elliptic operator with coefficients

continuous in § and g >n . Then there is a constant K such that

(1. 6) flwll < K(llgwll + Jlwll )
w? s ) LY(s) L9(s)

for all we Wz’q(s) . The constant K depends on n,q, the diameter
of 9§, the distance from so to 0¢, the ellipticity constant of ¢ ;

and bounds for the coefficients of ¢ (in Loo(s)) and the moduli of

continuity of the coefficients. ‘

Completion of proof of Theorem 1.1. From (1.4), 0 < ue -u 5 < 6-g for

0<e<6< €g * Therefore lim u = u exists uniformly in Q where
e 505k
u>0 in © and u=0 on 92. Itremains to see that ue CZ(Q) and

Lu = g(x,u) in Q. Clearly u_>_u£ for ee (0,¢ by (1.4), so u >0

o

in Q@ and g(x,¢ +u€) -+ g(x,u) uniformly on compact subsets of Q

i it

lcslcn and

g >n. By Lemma L. 5 there is a constant K = K(n, q, 81, QZ.L) such

Choose open subsets 8 ;92 of Q so that ;_9—2 Cc®

that

G
SO SSe ety

7 (1.7) flu | < K(llzu i + )
\ 2 -
3 N ’q(sz) e Lq(sl) i Lq(sl)

E | = K(llg(x, e +u ) | # flu |l )
Bl SERC MR

¥
i

In conjunction with the remarks above, (1. 7) implies that {ue | ee (0, go]}

- -

g
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is bounded in WZ’ C'(Q) . Therefore u - u weakly in Wz’q(Q) ;
loc £ ~ loc
Choose a € (0,1) and g > n(l -a)-l . It follows from the Sobolev em-
|
bedding theorems that {u 8} is compact in Clgg (2) and g(x, e+ue)

- g(x,u) in CI(Q) . Thus we have ue le(;f(n) and Lu = g(x,u) e

CI(Q) . The 19 regularity theory for L [1] now implies ue Wfo’z (Q)
and hence ue CZ’ a(Q) (i CZ(Q) :
loc

It remains to prove the uniqueness of u. If u and v are classical
solutions of (0.1), (9,) implies L(u-v) >0 on A= {xe alux) <v(x)}.
Since u-v =10 on 8A it follows that A =g as in the proof of (l. 4)

and u>v. By symmetry we also have v >u and the proof is complete.

Remark: Rather than using Lq interior estimates as above we could
have used the Schauder interior estimates. These are more convenient
for making minimal classical regularity assumptions as in [10]. However,
we will employ Lq estimates several times below.

We turn now to the more complex case in which g(x,r) is not
monotone in r . The existence theorem for this case will be obtained
as a consequence of results concerning the more general nonlinear

eigenvalue problem

Lu = Ag(x,u) Xe Q ,
(1. 8)
u=0 Xe O .

By a (classical) solution of (1. 8) we mean a pair (\,u) e (0,%) X
(CZ(Q) n CO(S—Z)) with u > 0 in @ which satisfies (1.8). Here and

below
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Theorem 1. 9. Let g satisfy (gl) . Then there is a set ¢ of solutions

CO(§)= {fue c@)) u=0 on 0g) .

of (1. 8) satisfying
(i) ¢ 1is connected in R XCO(?Z-) 5
(ii) ¢ 1is unbounded in R xco(ﬁ) .
and

(iii) (0, 0) lies in the closure of @ in R XCO(S—i) .

Theorem 1. 9 will be used to prove:

Corollary 1.10. Let g satisfy (gl) and

There is a constant A such that

(9,)
glx,t) < B for r>1 and xe¢ & .

Let ¢ be as in Theorem 1.9. Then {\|(\,u)e =} = (0,). In particular,

(0.1) has a solution.

Proof of Theorem 1.9. As in the proof of Theorem 1.1 we begin by intro-

ducing the approximate prrblems:
(1. 11) Lu = A\g(X,e+u) in @, u=0 on aQ ,

where ¢ > 0. Solutions (A,u) of (l.1l) have the obvious meaning. Let

uv denote the inward normal derivative of u on 9Q and define

P={ue Cl’a(§)|u>0 in @, u=0 on 82 and u >0 on 9Q }
\ 4

where a e (0,1). Let 0< ¢ <eg, imply g(x,e) >0 in Q. It follows

0

from Theorem 3.7 of [ 8 ] that for 0 < ¢ < g_ thereis aset ¢ of
& €

0

<9
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solutions of (1. 11) which is a connected and unbounded subset of

i ¥ bl

+ p—
(R* x P)U {(0,0)} (in the topology of R X Cl’ %)) and contains
,{ (0,0) . It is easy to see that the topology induced by R X Co(a) on
the set of nonnegative solutions of (l.11) coincides with that induced by

L a(?Z) . Hence rm is connected and unbounded in R X CO(S—2) ;
£

R X € ;]
1

The existence of the desired set ¢ will be obtained by studying
ce as ¢ - 0+. Let & be abounded open neighborhood of (0, 0) in
R X 60(5) . The next step in the proof is to find a solution (\,u) e 9%

of (1.8). By the properties of ce there is a solution (xe,ue) e ag N

((0,00) X P} of (J.U) for 0<eg < € - We will show that if e 0+
and \ - \, then X\ > 0, a subsequence of {u } converges to a
€ £
m m
function u e CZ(Q) n Co(ﬁ) and (A,u) has the desired properties. To

do this requires upper and lower bounds for u and these are given by
3
‘ the next lemma.

Let ¢e Cz’ 0(5) be defined by
(1. 12) Lo =1 on @ »=0 6n o
Lemma 1.13. Let M>0 and ()\e,ug) e (0,0) X P be a solution of
« (1. 11) satisfying A < M and u_ < M in @ . There is a number ¢ >0

and a pair of functions ; (M) >0, i(ﬁ, M) >0 such that if ¢ is given

by (1.12) and 0< ¢ < ¢ then

(L) A Y (M) o(x) <u ()< BHA K@, M) o(x), xeQ ,

for pe (0, M].

.

¢ |




We first use Lemma 1.13 to complete the proof of Theorem I. 9

and then prove the lemma. Since ¢ is bounded, there is an M >0
such that (\,u) e & implies \,u<M . Let (xe,ua) e o6 N (0,0) XP

be solutions of (1.1l) as above, g 0+ and Xe +X. If A=0 we

deduce from (1. 14) that

0

IA
b

im sup
m —> m

fiod
o~
L
IA
W
3
e
m
o~
(=}
2

and hence that u =0 in C _(2). Thus (A ,u )= (0,0) in R XC_(2) .
€ 0 € € 0
m m m
Since (xe ,ue ) lies in the boundary of the open neighborhood & of
m m
(0, 0) this is impossible. Therefore X >0 .

From (1.14) and X >0 we see that ue is bounded from below
m
by a function which is positive in © and from above by a constant.

Arguing as in the proof of Theorem 1.1 we deduce that {ue } is bounded
2 m
in Wl’ CI(Q) for g >n and can therefore assume {us } converges
m
1, @
weakly in W (Q) and strongly in C 4 (Q) if g >n/(l-a) to a function

u e C (Q), such that Lu = \g(x,u) in Q. Passing to the limit in

(1. 14) we find

(1.15) AY (M) @(x) < u(x) < B+ K (B,M) ¢(x), xeQ,

for e (0, M] . Thus lim sup u(x) < g for each such B and this im-

X-> 992 i ]
plies lim u(x) = 0. Hence ue CO(Q) . In a similar way we see that &
X=> 0$2
( ue (X) >0 as x -~ 92 uniformly in m . From this and ue - u in
{ m m
C(f) it follows that (xe ) U ) = (\u) in R XCO(E) and hence
m m

" i s
E |2 (Nu)e 08
|




s~ . . s S

At this point we have shown that if ¢ is a bounded neighborhood
of (0,0) in R XCO(Q) then there is a solution (A,u)e 36 of (l.8)
which moreover satisfies (1.15). Let 3 denote the set of solutions of
(1. 11) which satisfy (1.15) with M = max{\, ”u”c(a)} (as do the ones
we have obtained). Since 3 N 8¢ #d4 for & as above, if closed and
bounded (in R X CO(E)) subsets of F are compact the existence of
C C F possessing the desired properties follows from a standard argument
of point set topology [i2]. Let {( xm, um)} be a bounded sequence in
F . Without loss of generality we can assume xm NS0, If
A=0, u. 0 via(l.15). If X\ >0, one shows as above that a sub-
sequence of {um} converges in CZ(Q) n 00(5) to a function u such

that (A, u) e ¥ . Thus to complete the proof of Theorem 1. 9 it remains -

to prove Lemma 1. 13.

Proof of Lemma 1.13. Set

(1. 16) T{(p,M):max{g(x,r)lxe 5, (35r5_1+M} .

Let ()\e, ue) be as in the lemma, 0<g <1 and Be (0,M]. Set

A‘3 = {xe Q| u;_(x) >B} . Then, using (l. 12), (1.16),

L(B + XEK(B, M)y - up) =iy 4 )\E(K(B, M) - g(x,e+ue)) 20, Xe Aﬁ

P+ A NiPy Ml s

n

N K@, M)¢ >0, xe aA‘3

Thus u_ < f + Ae K(B, M)¢ on Aﬁ by the maximum principle and the

right-hand inequality of (1.13) is established.

«]2«
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To obtain the left-hand inequality, choose R > 0 so that g(x,r)>1

if 0 <r < R, which is possible by (gl) . Define vy = min(l, R/2 M”cp"
Then for ¢ ¢ [0, R/2], ve (0,y] and Xe (0, M]

(1.17) Lhye < Ag(xX,e + Ayp) in Q .

2 *
From this we will deduce that Xeyqo < ue . Indeed, define y by
us-y)\sqaePfor 0<y<y and ue-xsy ¢od P. It suffices to
%k — ES — i
siiow ¥ >y« M y <y, w:ue-y )\ecpzo in @ and, by (1.17),

for C>0

(1.18)  Lw +Cw >Cw + A [g(x, etu ) - glx, € + Y o]
X
But g(x, ¢+ ue) -g(x, e +y )\Eq;) > COW where C0 is a lower bound
og £
s <r< — = i
on» 5 (X 1) for e<E<e# "us"C(Q) + )\8 Y “q)”C(Q) . Choosing C

so that C+ )\e C0 >0, Lw+ Cw >0 by (1l.18) and we P by the maximum

* * i
principle. This contradicts the definitionof y andso y >y .

Hence K above, y = min(l, R/2M|l¢ll e = R/2 have the desired

C( 5))y

properties and the proof is complete.

Proof of Corollary 1.10. By the assumptions of the Corollary, (1.15) and

(1.16), (\,u) e ¢ implies (choosing f§ =1)
(1.19) u(x) < 1+ No(x), XeQ .

Since ¢ 1is connected and (0,0) e c—, the projection (A\,u)e ¢ = \
of ¢ into R has as its range an interval (0, A) or (0,A]. If A <»o ,
(1.19) implies that ¢ is bounded in R xCo(ﬁ) . Since ¢ is unbounded,

«]l3«
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A = and the proof is complete.
We conclude this section with an extension of Theorem 1. 9 to
the case in which the coefficients of L and g are merely continuous.

More precisely, we assume that

(L) L is uniformly elliptic with continuous coefficients
in © and c(x) >0 in @ ,

and, in addition to (gl) 3

(g,) g e C(@ X(0, )) .

One cannot expect classical solutions of

(1. 20) Lu = Ag(%,u) in @, u=0 on 9Q

in this case. We say (A u) is a generalized solution of (1. 20) provided

that there is a q > n for which (\u)e (0,09 N (00(5) N lec;cq () and

(1. 20) is satisfied a.e.

Theorem 1.21. Let (L), (gl) and (g4) be satisfied. Then (l.20) has a

set ¢ of solutions satisfying the assertions of Theorem 1. 9,

Proof of Theorem 1. 21.. The proof is similar to that of Theorem 1.9 so the

exposition will be abbreviated. For approximate problems we consider
(1. 22) L ous )\qm(x, uwin Q u=0 on 3Q

where

i 92 i 9
L _=a a,, (X)) —— + b, (X)=— + ¢ (x)
m 1,31 ijm E)xiaxj 1 im 8xi m

e

ek o ol v\




is a sequence of elliptic operators with Cn >0 whose coefficients are
smooth and converge as m - © to the coefficients of L uniformly in
Q . The functions 9, are chosen to be smooth in X [0, ©), to satisty
gm(x, r) >1 for 0 <r<R for some R independent of m and gm - g
uniformly on compact subsets of Q X (0,©) as m—~ o, (For example,
let 13 be a smooth approximation in the maximum norm of g(x, i-n +r)
on © X[0,m].)

The program now runs much as before. Let & be as in the proof
of Theorem 1. 9. As earlier, there is a solution (xm, um) e 98 N ((0,%) XP)
of (1. 22). To obtain a solution of (1.20) in 96 from ()\m, um) as

m -» 0 requires a version of (1.15). From the proof of (1.15) we have
. 23) Y < &0 i
(1. 23) k¥l e (S1Cu (K =g ALK (8 M) g (%) in Q

provided )\m,um_<_ M and Be (0,M] where

fm(p, M) = max {gm(x, r): Xe 5, B<r 51 + M}

(1. 24)
mepm=1 in Q, ¢m=0 on 9Q

and gm(x, r) >1 if 0<r<R. By the results of Bony [4] L: Wg’ q(Q) - Lq(S'Z)
is an isomorphism for g >n. Let A3(X,Y) be the space of bounded

linear operators from X to Y. Since Lm -+ L in B(Wc’z’q(ﬂ), Lq(Q))

as m - o,

L'l -—L'l in e(Lq(sz), Woz’q(sz))

-1

and a fortiori L;nl - L  in /3(Lq (2), 00(5 )) if g > n. In particular,

-5
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W in CO(§) where ¢ is the unique solution of Ly =1 in

w:’ Tlal o Loty (F Bo'the Himits as mor s of Y, K defined in (L. 24).
Note also that Bony's results imply ¢ >0 {n Q

It is now a simple matter to complete the proof as before. Choosing
appropriate subsequences if necessary xm - \>0, um ~ u in

2
Wlo’: (o N CO(Q), and (\u) € 96 is a solution of (1.20). Moreover,

(1.23) AY (M) o(x) <u(x) < B + NK(B, M) o(x)

for e (0,M], X,u< M. It then suffices to show anyclosed bounded

subset of generalized solutions of (1. 20) satisfying (1.23) is compact in

(0, %) X Co(fz) U {0,0}. But this follows as before as well, and the

proof is complete.

Remark 1.25. Corollary (l.10) remains true if ¢ is the set obtained in

Theorem 1. 21.

Remark 1.26 . It is clear that the existence assertion of Theorem 1.1

follows from Corollary 1.10 and that Theorem 1.9 may be deduced from
Theorem 1. 21 and standard regularity theorems. However our presentation
was organized so as to minimize duplication of arguments and, hopefully,

to minimize the readers discomfort.

Section 2. Boundary Behaviour and Regularity.

This section is devoted to the study of the behaviour of solutions of
(0.1) near the boundary. In particular, if g is independent of x and

satisfies (qz) the precise rate at which u(x) = 0 as x - 3Q is

~16 -
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determined and an estimate for |grad u(x)l near 9 is obtained. This
information is then used to obtain a modulus of continuity (sometimes
precise) for u in

We assume below that g is independent of x and that (gl)
holds. The estimates for u and Igrad u| will be in terms of a solution
of the one-dimensional problem -p” = g(p). To be precise, let a> 0

and pe CZ((O,a]) N c([o, a]) satisfy

(1) -p"(s) = g(p(s)) for 0<s<a,
(2.1) (i) p(0)=0,

(iii) p(s) >0 and g(p(s)) >0 for 0< s <a

Our main estimates for u and fgrad ul are

Theorem 2.2. Let g = g(r) be continuous and satisfy (gl), (gz) . Let
L satisfy (L), and ue CO(Q) n leé:(ﬂ) be a solution of (0, 1) where

q>n. If p satisfies (2.1), then there are constants )\, A > 0 such

that

(2.3)  Ap(d(x) Su(x) SAPA(x) on @_= {xe | dx) <a}
where

(2. 4) d(x) = distance (x, 9Q)

Theorem 2.5. Under the hypotheses of Theorem 2.2 there are constants

M, m,a > 0 such that

(2. 6) [grad u(x)| < M[d(x) g(mp(d(x)) + pdcz):)c 1

on
a




T T ST

As an illustration of these results, consider the special case

a

B

g(r) =r_ Trying for a solution of -p" = p-a of the form p(s) = bs

leads to the equations -bB(p-1) = b™% and B-2=-ap . If a>1, then
B = 2(1+ar)'1 and the equation for b has a unique solution. Thus

Theorem 2. 2 implies that u(x) is bounded from above and from below

2/(l+a) . Theorem 2.5 further tells us that

|grad u(x)| is bounded above by a multiple of d(x)(l'a)/(Ha) . Together

by a multiple of d(x)

these estimates imply that for y> 0

lgradu) | < ylu) 1Y lgrad u)l < K, deo*
b =%

where p = [2(y-1) + (1-a)]/(1+a) . Choosing y = (l+a)/2 we have p =0

Al lgrad(u(x)(l+a)/2) | (1+a) /2

is bounded. Thus u(x) is Lipschitz
continuous on © . Since v(x)s is Holder continuous with exponent
® whenever 6 ¢ (0,1) and v(x) is Lipschitz continuous, u(x) =

(1+a)/2)2/(1+a) is Holder continuous with exponent 2/(l+a) in 8 .

(u(x)
It is interesting that this is precisely the modulus of continuity of
solutions of (2.1).

These remarks show how Theorems 2.2 and 2.5 can be employed
to obtain a modulus of continuity for u. Namely, if we can find a
monotone function f so that grad f(u) = f'(u) grad u is bounded, then
f(u) is Lipschitz continuous and the continuity of u = f'l(f(u)) is
essentially that of f-l .

Our program in the remainder of this section is as follows: First

a detailed study of the problem <p" = g(p), p(0) = 0 is made. This will

-18-
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clarify the freedom of choice of p in Theorems 2.2 and 2. 5 and provide
other information used later as well. Then Theorems 2.2 and 2.5 are
proved. Next we remark on the case in which g depends on x and is
not monotone. Lastly, a further study is made of the modulus of con-

tinuity of u by the method described above.

Lemma 2.7. Let g: (0, ©) - R be continuous and g(r) - +© as r— 0+ .

Assume g(r) >0 for 0<r<b and set

b
(2. 8) F(s) = [ g(m)dT for s >0
S
and
R
(2.9) h(s) = [ ———— dr for 0<s<b .
0 ~N2F(T)
If p satisfies (2.1), then
p-l
£ = lim L
s—=0+ p(s)

exists and is positive. If F(0+) = «, then #2 -=1.

Proof of Lemma 2.7. From -p" = g(p) we deduce that

(2.10) p'(s)° = 2F(p(s)) + C

for some constant C . Since -p" =g(p)>0, p is concave near s = 0
and, although possibly infinite, p'(0+) exists. Moreover, p(s) >0
for 0 < s < a and therefore p'(0+) >0. Thus 0 < p'(0+) < and

p'(s) >0 near s =0. Now (2.10) implies s = H(p(s)) for small s

where
-19.
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Therefore p(s) = H'l(s) o (I C= 0, h as given by (2.9) coincides
with H . Moreover, h-1 has the properties required of p.) It is

clear from (2.10) that p'(0+) < if and only if F(0+) <% . Hence

when F(0+) <o 1'Hospital's rule implies

¥
: =1
h _(s) _ STon -
3 0 < lim ol N2F(0+) =f< o,
: s— 0+ N 2F(0+) +C

R

If F(0+) = o, the definitions of h, H imply that for ¢ ¢ (0,1) there

is an r’5 > 0 for which

e e

(2.11) (1-¢) h(r) < H(r) < (1+¢) h(r), BT < re

Choose r = p(s) in (2.11) and recall that p = H-l to deduce that

TR R TR

-1 s -1 s ;
E | (2.12) h (1+€ ) < p(s) <h ('1—_2—) if 0 < p(s) ﬁre
B 1
E | Since h-1 is concave near 0 and h-l(O) =0, h (as) _>_ah’l(s) and

h-l(s) = h-l(% YS) Zly- h-l(ys) for «¢€ [0,1], y>1 and s,ys >0

sufficiently small. Thus (2.12) implies that

(2.13) —~— 1) < p(s) < = nks)

; 1+ ¢ l-ge

for s near 0. Since ¢e€ (0,1) is arbitrary, (2.13) implies 2 =1 in

this case.

Proof of Theorem 2.2. Since u(x) and p(d(x)) are positive on Qa 3

~20-
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it suffices to show that we can find \,A, 0<a'<a for which (2. 3)

holds on Q. - Then (2. 3) will hold on Q with some other choice of
Set
n n
A 0 o
e e SR
1,3=1 (e R i

and define ¢ ¢ Wi’q(ﬂ) (see [4]) by £¢ = 1. By the maximum principle
of Bony ([4]) ¢ >0 in Q and, as a simple comparison argument shows
the interior normal derivative of ¢ on 9Q is positive. Thus ¢(x) is
bounded above and below on & by positive multiples of d(x) . Itis
therefore enough to show that u may be bounded above and below near

9Q by positive multiples of p(¢) since

(2.14) Bp(s) < p(Bs), P(ys) < yp(s) for 0<B<1, y>1 and 0<ys<a

The inequalities (2. 14) follow from the concavity of p as in the proof of
Lemma 2.7.

Let or = {xe Q) o(x) <r} where r >0 is so small that sr & Qa
and p'(s) >0 for 0<s<r. Nextobserve that if Ve Wz’q(sr) g
Lv Zg(;) in or and '\73 u on Bsr then 73 u in sr by the maximum
principle of Bony (see the uniqueness proof of Theorem 1.1). Similarly,
if Lv<g(v) and v<u on 80r, then v<u in ﬂr

We will show that we may choose v = Ap(p), Vv = \p(p) if A is

sufficiently large and 0 < \ is sufficiently small. By direct computation

2] =




i R s

ot comareitiig B e

n
p'(¢) Lo + cp(e) - P" () a, (%) o o
i,zj:-:l ij X, xj
n
P'(9) + CB(¢) + 9(Ple) ), A, (X) @ o
i,7=1 §ry

(2.15)  Lp(p)

Observe first that for r sufficiently small there isa & > 0 such that
lgrad ¢(x)| >6 for xe sr . Since p'(¢) >0 in sr and ¢ >0, to

prove

LAD() > g(A P(e)) in 8

it suffices to choose A so that
n
(2.16)  Ag(p(e)) ), a . (X)¢_ o > g(Ap(g) in 8
ij X, X I
i, j=1 )
By the uniform ellipticity of L, thereisa p >0 such that
n
2

b e ulgrad o]

i, j=1
on @ . Using the monotonicity of g, (2.16) holds provided that
A 62 #>1 and A >1. Finally, Ap(e) >u on Bsr also holds when
A is large enough. Thus then we have established an upper-bound of

the form (2. 4).

To show that \p(¢) has the desired properties, observe first that

by (2.15) and (gl) we have

(2.17) L(xp(p)) < g(rp(¢)) on S

for sufficiently small A\ >0 provided that, e.g.,

w22«




(2.18) 21p'(¢) < g(Ap(e))

on sr . By (2.10), (2.8) and the monotonicity of g

P'(o) < N2(b-p()) 3(p(0)) +T < ¢, N a(P(@)+1 < c,Ng(AB(e))

for X\ > 0 small enough and some constants cl, c2 . It is thus clear
that X can be chosen to satisfy (2.18) and also \p(¢) <u on 6Qr 5

This completes the proof.

Proof of Theorem 2. 5. We are indebted to L. Nirenberg for the basic jdea of

the proof. The first step is the following lemma.

Lemma 2.19. There is a constant K1 >0 such that if re (0,1],

5 n 2,q
BZr(xo) ={xe R | |x-x0| <2r} C @ and ve W (Bzr(xo)) where

g > n then
(2.20) lgradv(x)| <kl +1;|lvl| )
L (BZr(XO)) C(BZr(XO))
for xe Br(xo) “ ("LV” - = 1is allowed.)
L™ (B,,(x,))

The lemma is proved after first being used to establish Theorem 2. 5.

Let xe Q and set r =d(x)/3, v=u (so Lv =Lu = g(u)) and X=X

in (2.20). Note that if z e Bzr(xo) then

(2.21) d(x)/3 < d(z) < 5d(x)/3 .

Thus if A= {ze @| d(x) < 3d(z) < 5d(x)}, then

il 3w

FECHPY C R
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(2. 22) lorad ue ] < K @eo ol | ¢ == ull _ )

s B L7 (A)

where KZ = 3K Now Theorem 2. 2 together with the monotonicity of

E
g, (2.14) and (2. 22) yield the assertions of the theorem.

;:;3 Proof of Lemma 2.19. Let X € 2, and 0 < 2r< d(xo) . Changing

variables according to xO +ry = X, we define

2

1 § ) ek )
' = — a, . (x +ry) ——— + = Z b (x_ +ry)m—+ c(x + ry)
; p) ]
2 o + g 40 i i e
and v__ (y) = v(x, +ry) for Iyl <2 and ve Wz’q(B (x.)) . Then
rxo 0 — 2r ¢

(ero ero)(y) = (Lv)(x) for |yl <2

The operators rerx in {|y| < 2} have uniformly bounded coefficients,
0
a uniform ellipticity constant and the coefficients have a uniform modulus

of continuity for x_e @, 0<2r< d(xo) . Thus by the Sobolev embedding

0

Theorem and Lemma 1. 5

2
v wl<ke“lin. vl s vl )
N P o Penidylen o 1(lyl<2)

for |y| _<_l . Estimating the Lq norms by the Loo norms and using

1 L v (p=r 2. v(x) above then supplies the desired estimate.
Byi rX, 8xi !
§

Remark 2.23. If g(x,r) depends on X and is not monotone in r suppose

| there are continuous g, E such that

(2.24) g(r) < inf min g(x,s) and g(r) > sup max g(x, s)
0<s<r xeQ §>r xeQ

(If g(x,r) is monotone in r, we can drop the inf and sup and define _g_,:;'

by equality in (2. 24). For the general case there may not exist such a

continuous E ).

-24~-
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Then solutions of (0.1) are bounded above by solutions of Lu = E(U) .
u

E, p satisfy (2.1) with g replaced by E and g respectively. Then

=0 on 3@ and below by solutions of Lu=g(u), u=0 on 9Q. Let

the above arguments establish estimates of the form )\_g(d) <u< A;(d)
and [grad ul < K(d E(Mg_(d)) + p(d)/d) in a neighborhood of 82 in €.
We now return to the question of obtaining an estimate for the

modulus of continuity of u. The case g(r) = r"% & >1 was discussed

earlier. The cases 0 < a <1 are covered by the next result.

Theorem 2. 25 Under the hypotheses of Theorem 2. 2, the following

are equivalent:

(i) u is Lipschitz continuous in Q

(ii) F(0+) < o where F is given by (2. 8).

Proof of Theorem 2. 25, First recall from the proof of Lemma 2.7 that

p'(0+) = ©» if and only if F(0+) = . Let v(x) be the inward pointingunit

normal on @Q . By Theorem 2.2, if Xe 9Q and t >0

AP((x+tv(x))) . UxHtv(X) . AD(A(X+tv(x)))

(2.26) - g < ;

Since d(x + tv(x)) =t + o(t), if u is Lipschitz continuous (2.26) implies
that p'(0+) < o . In fact, if p'(0+) = © we see from (2.26) that
lim inf u(x+tv(x))/t = uv(x) = atevery xe 8Q. It remains to show 4

t—-0+
that u is Lipschitz continuous when F(0+) <% . By Theorem 2.5, it i

e

suffices to bound p(s)/s and sg(p(s)) for s near 0. But p(s)/s =
p'(0+) < © as s - 0+, so p(s)/s is bounded. Thus we need only bound

a1
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s
sg(s). Since F(0+) - F(s) = f g(T)dT > sg(s) by the monotonicity
0
if F(0+) < 0 then sg(s) -~ 0 as s - 0+ and the proof is com-

of g,

plete.

Next we treat the case g(r) = r-1

Theorem 2.27: If g(r) = r'l and u and p satisfy (0.1) and (2.1)

respectively, then p-l(u) is Lipschitz continuous near 9% .

Rl RIS, .« 55 W "y

Proof of Theorem 2.27. Using (2.10) and Theorem 2. 5 we have

: (2.28) lgrad p” ()| = — lgradul < =—X—— dd + p%i))
NZ2F(u)+ e V2Fm+s P@

for some constant K. Next, choosing b=1,

1
(2.29) Fu) = [ 1; dr = -logu > -log(A p(d))
u

by Theorem 2.2. The term d/p(d) on the right in (2.28) tends to 0

as d - 0 since p'(0+) = © . Thus it remains to show that

p(d)/(d N -log (Ap(d)) + T ) is bounded as d = 0 and to do this it

suffices to bound p(d)/d ~ -log(p(d)) Setting s = p(d), this expression

can be written s/(H(s) N -logs ) where

S S 1

E | H(s):f-—-—l———-drzf , dTZ§ sl
0 N-2logT+c s/2 N -2logT+C ~I-Zlog(—2-)+5

Hence s/(H(s)N -logs) is bounded as s = 0+ and the proof is complete.

More generally, if g is independent of x and nonincreasing, we

seek an increasing convex function f >0 with f(0) = 0 such that f(u)

is Lipschitz continuous near 9Q . By Theorems 2.2 and 2.5,

-26-



%
3

T T R T T o L e

|grad fu) = [£(u) gradulf K f'(Ap(d)) [dg(Mp(d)) + p(:) 1,

or, with p = h'l, h given by (2.9), s =Ap(d), d=h(s/A),

(2. 30) lgrad £ < K £:(s) (a( 2)g (X 5) + =)
h(3)

It therefore suffices to bound the right hand side of (2.28) by a constant.
If we choose f'(s) = h(s/A)/g(Ms/A), then we can clearly bound (2.28)

and f'(s) is increasing as desired. This choice is quite crude and can

be improved. For example, if g(r) =r %, o >1, f(s)~ s(3a'+l)/Z and
s b ’

2 /(3atl)

we would only conclude ue C (5) . We do not know an optimal

continuity result for the general case. Perhaps Theorem 2.5 is itself

too crude for this purpose.
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